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Introduction

The investigations reported here all fall within the
guidelines of the objectives as delineated .in NASA Contract
NAS 8-21480. The primary structufesvanalysed were inflated
cylindrical shells, considered the most feasible configuration
for use as space vehicle antennas and gravity-gradient damper
booms. For the inflated membrane cylindrical shell the following
investigations were performed.

The wibrational analysis of general pressurized cylindrical
shells utilizing nonlinear membrane shell theory is presented,
First order effects of stretching of the middle surface are
included. The results are presented in a graphical form showing
the variation in frequency for.various internal pressure levels.
A comparison of vresults with a known classical solution nro-
vided a check for the method of solution used:

The free vibration of long cantilevered cylindrical beams
is considered. The effects of internal pressurization and trans-
verse shear stiffness are included. The results are presented
in a graphical form with a nondimensional frequency plotted
against a nondimensional parameter which was a function of the
shell shear stiffness and the internal pressure.

The nonlinear analysis of an inflated cylindrical beam with
undeformed axis inclined at acute angles relative to the vertical
and rotated uniformly about the vertical is presented. Steady

state deflections are deteymined for flexible rods numerically
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and compared to experimental deflection curves. From a steady
state deflection or prestressed state a set of linear pertur-
bation equations are derived. These equations are solved nu-
merically for the natural frequencies associated with the per-
turbed motion. The results.of these studies.are presented and
discussed in the latter parts of Chapter III and IV.

Experiments were designed and performed to check the theory
and analytical results obtained. A detailed discussion of these
experiments is included.

A brief summary is given at the beginning of each chapter.
The notation and symbols used in each chapter are defined when

introduced and may not be the same in the different chapters.
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CHAPTER
VIBRATIONS OF PRESSURIZED MEMBRANE CYLINDRICAL SHELLS

Summarz

Nonlinear equations of motion are derived for a pressur-
ized membrane cylindrical shell. The equations of motion are
solved in closed form under the assumption of infinitesimal
time dependent perturbations about the axisymmetric pre-
stress state. ' Nondimensional natural frequencies are deter-
mined as a function of the number of half waves in the cir-
cumferential and meridional directions for various values
of the internal pressure and shell geometry.

T-A Introduction

The investigation of the vibrations of prestressed shells
requires a consideration of the nonlinear shell equations. The
object of this chapter is to derive and solve the equations
governing the vibrational behavior of prestressed membrane
cylindrical shells. Using the nonlinear membrane shell theory
of reference (I-1) the vibrational analysis for simply supported
cylindrical shells is determined.

The effect of internal pressurization is accurately
accounted for by permitting the pressure force to always remain
normal to the deformed surface. In addition, first order effects
of stretching of the '"middle surface'" of the membrane are in-
cluded. The prestressed state of the shell is assumed to be
satisfactorily given by the membrane state of stress.

Results are presented in a graphical form showing the varia-
tion of natural frequencies with internal pressure and shell

dimensions for different wave numbers in the circumferential




and meridional directions. A comparison between rrequencies
obtained in this analysis and those obtained from other

analyses appearing 1in the literature is included.

I-B Analysis

The shell geometry is illustrated in Figure 1. A point
on the surface of the shell is located by the axial, ciccum-
ferential, and radial coordinates (&,0,r) respectively. The
displacements of this point are (U,V,W) in the axial, circum-
ferential, and radial directions respectively. The shell is
assumed to be isotropic and homogeneous with a constant thick-
ness h, Youngs modulus E, Poisson's ratio u, and mass density

Po

Governing Nonlinear Equations
The nonlinear equations for the cylindrical shell are

derived from Hamilton's principle

t
SK =/ (8T + &H - sU) dt (1)

where T is the kinetic energy of the system, jZ.is the work
done by the external loads, and :Li is the change in strain
energy stored in the shell during deformation.

Kinetic energy. TFor this analysis, the inertia of the

pressurizing gas will be neglected so that the kinetic energy

for the membrane is
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where dots over the sympols indicate differentiation with re-

spect to time.

Virtual work of external loads. In deriving the ex-

pression for the virtual work of the external loads, it is
assumed that the pressure force remains everywhere normal to
the deformed surface. Thus the additional components of the
force vector in the axial and circumferential directions must
be included. With these considerations, the virtual work of
the pressure loading is
SH= 7 p(-W .) U dA + / p(-=W , + L) 6V dA

A ' & A r ,6 T

(3)
v

0 W
+ fA p(1 + U;E =t ?) SW dA

where dA = rd6é d& and commas denote differentiation with
respect to the following subscripted variable. The first term
in equation (3) is the component of the pressure loading in
the axial direction, the second term is the component in the
circumferential direction, and the third term is the component
in the radial direction. Note that for the force component

in the radial direction, the coefficient of §W has been
appropriately modified to include the first order stretching
effect of the ‘middle" surface. As a result, each of the

terms in equation (3) are of first order in the displacements.




Strain Energy. Consistent (see for instance, (I-1)

with the previously derived equations for the virtual work,
the variation of the strain energy stored in the membrane is

ST =/ (N8ep + NoSeg + Nygbe,o) dA (4)
A £e

g 87786 g6

where N Ne, and Nge are the stress resultants and €

E’ E’ 669
€rg aTe the tensor components of strain to be developed in the
next section.

Strain displacement relations. The nonlinear tensor

components of strain, in terms of displacements, for a cylin-

drical coordinate system are from Reference (I-2)

~ 1 2 2 2
E(c; = U’E + '2" (U9g + ng + W:g)
(5)
- 2 1 2 1 (U,
ey = %U,e P 3=V, W 37 - V)7 ¢ 7:.5( 'g)

<

_ 7’8 1 1 £
€gp = T + V’g 3 U’EU’G * 3 V,g(V,e + W) + =

Equations of motion. The nonlinear equations of motion

and the corresponding boundary conditions of the cylindrical
membrane are now obtained by substituting equations (2Z), (3),
and (4) into equation (1) and integrating by parts where
possible to eliminate the derivatives of the variations. The

results of this straightforward procedure are




in U direction:

N -(N,U bl N U N
e Mglgdvgr S0V g)ogm Lo,
(NEGU’Q)’E + phU + pwsg =0
in V direction:
NV, 0he - BN, oL N e W |
ghrglre T Ve, Ty Lot e T e
1] "l
- ?E_NEG(V’B + W)ﬂj V,g)se -
1 Vs
P (' Wse + ‘i‘?) = 0
in W direction
N N
) 6 6 1
(Ngwpg)sg + ""“’ + ;";' (V 58 + W) ';'2" Necw’e

~l 1] ;
V0" T (e | ve T F [ Nge(oe V)] o

with the corresponding boundary conditions

1
N, + N.U + = N

£ £ v kR

NegVop * Nog * 1 NogVsg

NW, g+ & Neg (g -

U,e

P
~

L8y
=

U=0
V=20
W=20

(6a)

1
- T ENEGU’E)’S +

(6b)
Ng (W, V)
e + phv -

(6¢)

(7)




The equations of motion (6) represent the sum of the forces
along coordinates of the undeformed surface and are valid for
large displacements, small strains, and moderately large rota-
tions.

Vibration equations. In the derivation of the vibration

equations, the stress resultants and displacements are sepa-
rated into parts associated with an initial axisymmetric
prestress and parts associated with infinitesimal time depen-
dent perturbed displacements about the prestressed state. Thus,
the stress resultants and displacements in the total stress

state are given by

2 € g
Ne=N‘e““I~“6
Ngo = Neo * Mg @)
U="T+ 6
V=V =+ 6
W W W

where the bars indicate the prestressed state and the (orders

of magnitude smaller) tilde quantities refer to the per-

turbed state. It is assumed that no additional external loading
is associated with the perturbed state. Substituting equations
(8) into equations (6) and (7) and subtracting out the initial
equilibrium state yields the linearized equations governing the

free vibrations of a prestressed cylindrical shell as follows:




) InlU firection:~ 1 ) . ) (9a)
In V direction:
LR e, e WV, ¢ LN, 2i,. - V) - oV +
T eae Vgepa TETPEE r? T L -] P '
N . (9b)
% (-eW,e + V) = 0
In Wmdirecti@n:
N- e 'v (N [ o~ AAN T.
W RNy 2ygn Woge) - pBW v p (I, 2R
EVEE T?
Vg + W) =0 (9¢)
with boundary conditions
NE + Nguﬁg = 0 or i = 0
WEV’E + Nge = 0 or v = 0 (10)
NEW’E = 0 or W = 0

In obtaining equations (9) and (10), it was assumed that
the prestress deformations could be neglected and that the stress
resultants in the prestressed state were constant. (With these
assumptions, equations (9) agree with those used by Leipens
(I-3) for a toroidal shell.) For a cylindrical membrane under
internal pressure, these assumptions are justified for a linear
vibration analysis.

Prestress state. The prestress in the cylindrical mem-

brane is assumed to be satisfactorily given by the membrane
state of stress. Thus, consistent with the assumption that the

prestress deformations can be neglected, the prestress stress




resultants are

(11)
Ne = pr Ng = pr/2 Nge = 0
where r is the undeformed radius of the shell,
Constitutive relations. Consistent with previous assump-

tions, the relation between the linearized stress resultants and

strain are

P
il

~ ~ _v ~ -~ e
3 B[U%"*Fﬁhe*wj

r - - -
s = B %?~(v,e + W)+ U

(12)

=z
i

Z R
|

B 1 7 o
ge = 2‘ (l "\)) (-I‘_U’e * V’E)

Solutions for Cylinder Vibrations
In their present form, equations (9) and (10) are partial
differential equations with three independent variables. How-
ever, for this analysis, the 6 and time dependence is removed
by assuming a separable type solution

U = u(x)cos nbd el0t

W = w(x)cos nb elwt

~ .

N, = ng(x)cos no ettt

(13)

~ .

N, = ne(x)cos-ne elwt

V = v(x)sin né elvt

- o iwt
NEe nge(x)51n ne e




where X = £/L. Substituting equations (13) into equations
(9) and (10) and making use of equations (12) yields the

governing equations as follows:

it i i

Fllu + Hllu + Glzv + G13w = (

¥ 1A a (14)
GZlu + Fzzv + szv + H23w = ()

? 1R} )

with the corresponding boundary conditions

1 ﬁg . N
r(l * —5 Ju  * = (nv + w) =0 or u =0

N . )
%(1 + E%T?V))v - %5 = 0 or v = 0 (15)
N wv = 0 or w = 0

In equations (14) and (15), primes denote differentiation with

respect to the nondimensional coordinate X. Also

. N
Ty < £
Fip = (g (3 + g™)

N
T2 1V 3
Fap = ()7 (v g )
N
P N
Fag = (37 57
) ) ) Ne . n%r (16)
Hyg = Hgp = -n - 2n =

[p]
i
i
[op]
(48]
}_J
{
~
Bj_/

12

[op}
i
[op)
]
ks
~
<
]
o
=
S

13~ Y31
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Hyy = = (@ -v) - —p=* 7755

Hgz = -1 - g~

For this investigation, it was originally intended to
determine the natural frequencies of a cantilevered cylindrical
membrane. However, equations (15) show that for this boundary
condition the impossible condition of zero slope (w‘ = 0) is
required at the free end. (Such a condition also appears in
the problem of the "free end string" and can only be avoided by
considerations of the bending stiffness of the structure.)
Hence while results could be obtained for the cantilever boun-
dary conditions, it is felt that more realistic and meaningful
information can be presented by determining the natural frequencies
for simply supported cylindrical membranes.

Numerical results for simply supported pressurized cylin-

drical membrane. The solutions of equations (14) which satisfy

the u = v = w = 0 simple support boundary conditions are

0 sin mmx

u (x)

v (x) = B cos mmx (17)

Y sin mmwx

w (x)
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Substituting equations (17) into equations (14) and repiring
that the determinant of the coefficients a,B, and ¥ vanish,
leads to the following sixth order characteristic equation for

the determination of the natural frequencies.

6_6 4 4 2_2

sAmvm + Brm - Crt™m” + D=0 (18)
where
A= -Fpy) Fop Fog
B = -F,, G2, -F,.(F..H,, + H,-F,. - G2.) + H,,F..F
22 G13 "Fgz(FyHyy *+ Hy Foy - Gy 53F11F22
C = -G%, Hoo + GioGuoHoo # GooGuoHoo - F..H2. + H,. %
13 Hyp * Gpp6y5Hyz + GGy gHsy - FyyHyq & Hyg
(19)
2 .
(Fyq Hyp = Hyy Fop = Gyp) - Hyy Hyy F oo
D = H.. How H,. - H.. HZ
11 Hpp Hzz - Hyp Hyg

Equation (18) has been solved for the frequency parameter for
a typical pressurized cylindrical membrane with R/L = .333,
R/t = 500, 1000, and m = 1, 2 for various values of pr/Et
from 0 to .002. This upper limit was chosen since it represents
the maximum elastic strains for many engineering materials.

The effect on the natural frequency due to the internal
pressure is illustrated in Figures I-1,2,3, and 4. The results

indicate that for any given R/L, the effect of prgssure on the

natural frequency is approximately the same, if R/t is sufficiently

small such that the shell approaches a true membrane. It is
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also interesting to note that for no internal pressure, the
frequency parameter of the membrane decreases monotonically to
zero for an increase in circumferential wave number n. Since
the frequency varies with the effective '"stiffness'" of the
membrane, this is equivalent to a monotonic decrease in stiff-
ness with an increase in n for no internal pressure. How-
ever, when internal pressure is added, it can be seen from the
figures that the frequency, and hence the stiffness of the mem-
brane is increased with an increase in n for n greater than
3 to 5.
These results have been compared with an approximate
formula derived in reference (I-4) by using Donnell's theory and
neglecting the inplane inertias. For large values of >n, where
Donnell's theory is applicable, the results were in good agreement.
Finally, calculations were also made using the results of
this analysis but neglecting the inplane inertias. TFor the
typical cases treated, the error introduced in neglecting the
inplane inertia was of the order of five percent or less. Hence,
for most practical cases it seems reasonable that this effect

can be neglected.




I-1.

I_ZQ

I"So

I-4.
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Figure I-1. Geometry of cylindrical membrane.




Figure I-1. Frequency Variation with Pressure
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Figure I-2.

Frequency Variation with Pressure
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Figure I-3. Frequency Variatiocn with Pressure 17
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CHAPTER 1II

VIBRATIONS OF INFLATED CYLINDRICAL BEAMS

Summazx

A linearized set of goveyning equations 15 develcped
for the vibratory motion of inflated cylindrical beams.
Natural frequencies are calculated for the first tive
normal modes of & cantilevered beam. The frequency values
are given as a function of an effective shear stifiness
parameter. The results are applicable to orthotropic
materials for the beam walls. The method of analysis
yields frequency values for the reduced case ¢f no internal
pressure and infinite transverse shear stifiness which
compare favorably to classical frequency values.

Ii-A Intrgduction

The objective in this chapter is to derive and solve
the equations governing the vibratory behavior of inflated
cylindrical beams. The analysis is based on a procedure
similar to that developed in detail in References (II-1)
and (II-2) for the buckling of inflated beams and rings of
circular cross section. Hamilton's principle is used to derive
the governing equations. The effects of internal pressure
and transverse shear deformations are accounted for by re-
ferring the local displacements in the beam wall to rigid
body translations and cross sectional rotations. The results
are valid for moderately large deflections and rotations of

the beam.
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The results are presented in a graphical form showing
frequency values as a function of the internal pressure and
transverse shear stiffness. The effect of internal pressur-
ization is shown to depend on the inclusion of the trans-
verse shear stiffness of the beam in the analysis. A com-
parison with known solutions for the case of no internal
pressure and infinite shear stiffness provides an indication

of the validity of the results found in this investigation.

I1-B Analysis

A segment of the pressurized cylindrical beam config-
uration and the coordinate systems are shown in Figure II-1.
The displacements u, v, w of points on the surface are related
to rigid body translations and rotations about the centroidal
axis of the beam. Translations u. and rigid body rotations
ws of the centroidal axis are referred to a local cartesian

coordinate system with its origin along the centroidal axis.

YsUssM
A‘.2

w2\

Figure II-1 Coordinates, displacements, and load resultants

on inflatable cylindrical beam.
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Certain simplifying assumptions have been made in this
analysis: (1) The beam is considered to be a membrane in that
the local bending stiffness of the walls is neglected, (2) the
beam vibrates without localized wrinkling of the membrane walls,
(3) any cross section of the beam remains rigid in its own
plane so that the cross section remains circular and the re-
sulting deformations can be characterized by the six rigid-
body motions of translation and rotation of the cross section,
(4) the rigid body rotations are small enough for the displace-
ments on the surface of the beam to be represented by the vector
sums of the displacements due to translation and rotations of

a cross section.

Derivation of Governing Equations
The equations governing the vibration behavior of a
prestressed cylindrical beam are obtained from the variational

form of Hamilton's principle

Sft’ (ﬂl o, - T) dt = 0 (1)
where LY is the change in strain energy, T, is the potential
energy change of the internal pressure due to deformation and
T is the change in kinetic energy of the beam.

Strain energy of the beam. Consistent with assumption

(3), the strain e, in the 6 direction is neglected so that the

0
strain energy 7, for the beam becomes

L 27
= L
T 5 fO fo (Nxe:x + N

xesxe) rdodx (2)




where, for the cylinder, the pertinent nonlinear strain dis-

placement relations are

2 2
ou ; 3V . OWN
Ex"s‘x“”[(‘ﬁ) ¥ (5'9:)]
(3)
- 9V 1 3du 1 ow oW s
S " T Tr T roax (3 oV

An immediate consequence of assuming zero circumferential
strain is that the material constants E and G may be de-
fined independently. Hence the results of this analysis will
also be valid for orthotropic materials. In terms of trans-
lations and small rotations of a cross section, the local

displacements u, v, w are given by (see ref. 1)
u = u, + rwzcose - rmzsine

. T, 2 2 .
uzcose - u351n6 - Twy * E(wZ - w3) sin26

<
]

(4)

=
fl

. 2 2 2 2 .. 2
u251n6 * U,C0s0 - %(wl + w,C0870 *+ wgsin 8)

so that the strain energy m, can be expressed in terms of the
rotations and translations of a cross section as
Ty Ky # M3K3 + Mlyl + VZYZ + V3y3) dx

L
=y 6 (Ne, + M,

(5)

22




where

M M
Nx = gﬂr + 2 cosbB - S sinb
mr? mTr?
M \Y v
Nxe e L _—% cosd - F% sin8
2mr? n
3 (6)
N = ZEwrhel M1 = 2G7Tr hyl
V, = Gmnrh M, = EwrShK
2 Y2 2 2
VV = Gnrh M., = EﬂrshK
3 Y3 3 3
and
! 2 '2 '2 '2
ep =up ik (riegT e uy” v ugt)
k _ !
2 T Wy T W Wy
1 i 1
(7)
1
Y1 % 9
1 ]
Yp = Uy = Wz * Wy Usg
H
Yz = Ug * Wy = 0y Uy
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Primes denote differentiation with respect to x.

Potential energy of the pressurizing gas: The change in

potential of the pressurizing gas,
Ty = - pAV (8)
where p 1is the internal pressure and AV is the change in

enclosed volume due to deformation, can be written in terms

of us and w; as (see for instance ref.l,2)
_ 2 L e e - we - (0l 4 w2
Ty = pTY g ijul T U g Ui, %sz 4 w3):§dx(9)

Kinetic energy of the beam. The kinetic energy for the

beam is developed on the assumption that the kinetic energy

of the gas -is negligible in comparison with the mass of the

beam.
Then
2
T = wph fL ui + ug + ug + z-‘-2-(co§ + w% + Zrzwi)] dx
o (10)

where p = mass density of the fabric walls of the beam.

The nonlinear equations governing the behavior of the beam
are now obtained by substituting equations (5), (9), and (10)
into (1), and utilizing the fundamental lemma of the calculus
of variations. Performing this operation and neglecting the
twist about the longitudinal axis (which is usually small)

the nonlinear equations become




[NV
s
4
<
(V]

]
J
€

w
I
Q
o

t 1 “e (11)
M2 - V3 - P (u3 + wz) = sz
1 1 .
M3 + V2 + P (uz - ws) = kw3
where
- _ 2 2
c = 2mph k = wohr P = prr
(12)

The corresponding boundary conditions are, at x = 0 and L

u; = 0 or N-P=0
1
u, = 0 or Nu2 + V2 - Pw3 = 0
- ! _ (13)
ug = 0 or Nu3 + V3 + sz = 0
Wy = 0 or M2 = 0
Wy = 0 or M3 = 0

25

Equations (6) and (11) constitute a system of 10 equations

and 10 unknowns.




26

Solutions of Vibration Equations

Equations (11) are now used to obtain solutions for
the vibration characteristics of an inflatable cylindrical
beam with one end fixed and the other end free. In order
that this be accomplished equations (11) are perturbed in the
usual manner and the terms due to prestress are retained.
The corresponding terms due to prestress deformations are
neglected. Then the "linear'" equations governing the free

vibration behavior of an inflated beam become

" v
2Errh u; = cuy (14a)

11} 1 1A 1 o
P(u2 - ws) + Gwrh(u2 + wz) = cu, (14b)

1" f 1" 1 b
P(u3 + wz) + Gwrh(u3 + wzj = Cuy (14¢)

3 it t ¥ b

Emr hwz - Gﬂrh(u3 + wz) - P(u3 + wz) = sz (14d)

kw

1] 1] 1
E'rrrshw3 + Gvrrh(u2 - ws) + P(u2 - w3) (14e)

with the corresponding boundary conditions at x = 0

wy = 0 (15)
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ul = Wy = 0
1 3 ' _ _ (15)
Uy + Wy = 0 U, Wy = 0
¥
wy = 0

Equations (14) correspond to the Timoshenko beam equations
(ref. 3) with the additional effects of internal pressure
and large lateral displacements accounted for.

It will be noted from equations (14b, l4e) and equations
(14c, 14d) that the inplane rotation and displacement, w, and
u, respectively, are uncoupled from the out-of-plane rotation
and displacement, W, and Uz respectively. This is a consequence
of neglecting twist about the longitudinal axis and of the
beam cross section being axisymmetrical. In addition, the
term involving the axial displacement u, appears in only one
uncoupled equation, the solution of which is the classical
extensional vibration results of beams. Thus the extensional
stiffness EA of the beam is uncoupled from the effects of
bending and internal pressure.

An added simplification results when it is noted that the
structure of equations (1l4b,e) are identical to equations
(14c,d) so that for this analysis it is only necessary to solve
one of these two sets of equations. The set of equations

chosen for solution are equations (l4b,e). These equations are




first uncoupled by differentiating (14b) with respect to x,
11

solve for W) substitute into (14d) and solve for We, then

substitute this result into (14b). The results of this

straight forward procedure are

2 uZIV+ Bu, +Tu, =0 (16)
where
o2 2
a = A b= -(g) | oE() ¢+ 1_;1
HGrENe? L P+ X4
; w 2 T, 2 (17)
T+ % |t (EF) 7 ()
P+ X
Te @y @yt Ch F-PLl %o grenll
C = — o) [ S, T e = iy ;
wo Wo (EI/cL*) Bl ET

and primes denote 3/93&, & = x/L.
With the solution for u, known, the expression for wg can be

obtained as

1 v _n
wy = (@ uy + e uy) (18)
where
L / 1
7L ]1- @reny | T =L (19)
a L 02 @ P+
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The solution of equation (16) is

S1X S2X | S3X 4 SuX
= age + a.,e + e
uz 1 2 8.3 a4e

and the corresponding solution to equation (18) is

© = S1X -51X S3X ~S3X
3L a;q;e a,q;@ + azq;@ a,04-€
where
s; = -s, = /X S; = -5, = /_ig
2, , = -2 & /T2 =
’ 5 D - 4E)
a a
- 2
q; = s, (d + e s7)
o= 2
qg = Sq (d + e 53)
The boundary conditions are
u2=0 at £ =0
w3=0 at £ =0
]
w3=0 at g =1
' -
u, - Lw, = 0 at £ =1

(20)

(21)

(22)

(23)

29
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Applying these boundary conditions to equations (20) and
(21) yields the following determinant of the coefficients a;

which must be zero for a nontrivial solution.

giriid
1 1 1 1
q -q
1 1 4, -q5
S -S: S -S
q15,° 4135;¢€ azse”° qzSge 7

. . -S3
(s1 - ql)eSl (~sl + ql)e 51 (33 - c13)es3 ( Sz ¥ q3)e

Discussion of Results

The roots (w/wgs)? of the determinant (eqn. 24) yields

(24)

the natural frequencies for an inflatable cantilever cylindrical

beam once the shear stiffness parameter 1/(P + K) and the length

to radius ratio r/L, have been specified. Such calculations

have been made for various configurations and the results plotted

in Figure 17-1, In Figure II-1, the nondimensional frequency
parameter -(w/w,)? has been plotted against the nondimensional
shear stiffness parameter 1/(P + x) for the first five modes
of vibration. It was found that the influence of beam depth
was negligible for L/r > 20 and accordingly the results shown
"~ in the figure are applicable for typical beam dimensions r/L
> 20.

Note in all cases that the frequency parameter decreases

with an increase in the shear stiffness parameter 1/(P + ).

This decrease is especially notable for small values of 1/(P + ).
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In this regard, it is pointed out that the values of (w/wg)?
for 1/(P + X) = 0 cannot be obtained from equation (24),

t

since if from equation (18) 1/(P + K) = 0 then wsl = u,

which corresponds to the last of the boundary conditions

(eqn. 23). Hence, since the equation of motion is the same

as the boundary conditions for all x, then the last line of

the determinant (eqn. 24) is identically zero and the deter-
minant thus has no nontrivial solution. However, values

of (w/wy)? corresponding to 1/(P + X) = 0 can be obtained from
classical beam theory (see ref. 3, for example) and the dotted
lines in Figure 1 represent extrapolation from these classical

values to the first calculated values of (w/w¢)? for 1/(P + X)

= 0,02,

Concluding Remarks

A theoretical investigation of the vibration characteristics
of a pressurized cylindrical cantilever beam has been carried
out with finite shear stiffness and appropriate contributions
from the internal pressure taken into account. The equations
governing the natural frequencies have been derived and solved,
and the results plotted in a usable format.

The major results of this investigation are: 1. Shear
stiffness of the beam wall material and internal pressure both
contribute to the effective transverse shear stiffness of the
beam, which in turn strongly influences vibration characteristics,
2. The effect of radius to length ratio of the beam on the
natural frequencies are negligible for typical beam dimensions

of say L/r > 20.
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Figure II-1. Natural Frequencies of Cantilever
Inflatable Beam For L/r > 20
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CHAPTER III

DYNAMIC RESPONSE OF RODS SUBJECTED TO GYROSCOPIC MOTION

Summarz

Nonlinear equilibrium equations are derived and solved
numerically for a flexible cantilever rod inclined to, and
rotated about the vertical at a constant angular velocity.
Solutions are obtained using both the Runge-Kutta integra-
tion procedure and the Taylor series expansion. Results are
presented in the form of initial and terminal values of the
dependent variables as functions of a nondimensional angular
velocity parameter. The results of this analysis axe also
applicable for slender pressurized tubes.,

ITI-A Introduction

This chapter is concerned with the derivation and solu-
tion of the nonlinear differential equations governing the
motion of a flexible cantilever rod inclined to, and rotated
about the vertical at a constant angular velocity. In the
derivation of the equations, it is assumed that plane sections
remain plane, shear deformation can be neglected, and the rod
is inextensible. Numerical solutions are obtained using a
fixed step Runge-Kutta integration procedure and a Taylor
series expansion. The results of the analysis are applicable
to the case of a pressurized tube with appropriate defini-
tions of the dependent variables.

In order to make the results of this analysis applicable

to a wide class of slender rod configurations, nondimensional
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values of bending moment, tension, and shear at the fixed end,
and nondimensional values of axial and transverse deflection,
slope, and centrifugal force, at the free end are plotted as
functions of a nondimensional parameter which characterizes
the angular velocity, mass, length, and bending stiffness of
the rod. These results are presented for the case where the
slender rod is rotated uniformly in a gravity free environ-
ment.

Finally, a check on the validity of the results of this
theoretical analysis is made by comparing with results ob-

tained from experiment. The agreement was excellent., A more

detailed discussion of the comparison between theory and experi-

ment are given in another section of this report.

IIT-B Analysis

Consider a thin extensible rod of length L, weight per
unit length p, mass per unit length m, and bending stiffness
EI, cantilevered at one end and inclined at an angle o with
respect to vertical. If in addition to the weight p, the

rod is rotated about the vertical at a constant angular veloc-

ity, the deformed configuration is as shown in Figure III - la.

A point on the undeformed rod defined by the coordinates x
and o is displaced axially (u) and transversely (w) to a
point on the deformed arc located by the coordinate s and the
slope (6) which the tangent makes with the reference axis.

At this point on the deformed rod, the centrifugal force is
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F, = mw? (- (u-x) sin o + w cos a) (1)

A freebody diagram of the deformed rod at this point (s,6) is
shown in Figure III-1b. Summing forces in the tangential direc-
tion (parallel to the deformed arc) yields the equilibrium
equation.

%__'g.;.Q%_g_:pCos(u-@-&)*FCSin(O&"'e) (2)

In a similar manner, the sum of the forces normal to the

deformed arc results in the equilibrium equation
d ds . o
- 3% + T Jc = P sin (o + 6) - FC cos (o + 6) (3)
In order that the sum of the moments are zero at any point
Q = dM/ds (4)

Equations (2), (3), and (4) are the differential equations
governing the deformation of a flexible rod. They are also
applicable for a pressurized tube if (a) the tension T is
redefined to be T-qA where q is the internal pressure and A

is the cross sectional area of the tube, (b) shear deformation
is neglected and (c) the cross section remains circular. Such

assumptions are reasonable for long slender configurations.
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In order to obtain a solution to equation (2), (3) and
(4), it is convenient to first rewrite them as a set of first
order differential equations. This is accomplished in the
following manner. From Figure III-la, it is seen that the axial

displacement u can be written as

u(s) = - /% cosbds + x (5)
0

and similarly the transverse deflection w can be written as
w(s) = /° sinéds (6)
0

From the Euler-Bernoulli hypothesis that plane sections remain
plane, the relation between the bending moment and curvature

is
M = EI -— (7))

Now substituting equation (7) into equations (2) and (3) and
differentiating equations (5) and (6) with respect to s, the
following set of first order, nonlinear coupled differential

equations are obtained.




%g = - - F. sin(a + 8) + pcos(a + 6)

-3% = %—% + FC cos(o + 6) + psin(oa + 6)

%% - %T (8)
%% = -Cos®
%% = sin®
where
£ =u - X (9)

The corresponding boundary conditions for the cantilever are

u
Ll

at s = 0 8 = & = w

(10)
at s =L M=T=Q-=20

The equations (8) together with the boundary conditions (10)
constitute a well defined initial value problem.
These equations are now solved using (1) a Taylor series

expansion and (2) a direct numerical integration procedure.

38
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Although the latter technique is more flexible and in general

a more feasibleand accurate approach to the solution, the Taylor
series expansion provides more physical insight into the solu-
tion of the problem. For this reason, it is included in this

analysis.

Taylor Series Solution

The nonlinear equations (8) define six unknown dependent
variables M, T, Q, 6, &, and w. However, if the slope 6 and cen-
trifugal force FC were known, then the displacements u and w
could be determined by integrating the last two of equations (8)
and the moment M could be determined by differentiation from
the fourth of equation (8). Then with the displacements, slope,
and centrifugal force known, the tension and shear could be
determined from integration of the second and third of equations
(8).

To determine the slope and the centrifugal force, it is
convenient to expand them in a Taylor series about the free

end as follows

6(E) = 6(0) + £ 8 (0) + %-2- B (0) Herrnnnn.
(11)

2 n

F_(E) = F_(0) + EF_(0) + 5 F_ (0) + «.ovns

where £ = L-s. The terms 6(0) and FC (0) at the free end are
unknown. In addition, the coefficients of & in each of the

equations are also unknown but as will presently be shown,
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they can be expressed as functions only of 68(0) and FC(O).
Thus, after the coefficients 6(0) and FC(O) are defined all
other terms in (11) are known and the result is two nonlinear
algebraic equations in the two unknowns 6(0) and FC(O).

To obtain a solution, values of 6(0) and Fc(O) are
assumed and iteratively adjusted until equations (11),evaluated
at £ = L, are zero. This iterative adjustment of the assumed
values is obtained using the Newton Raphson method for simul-
taneous equations (ref, III-1). For this analysis the Taylor
series (eqns. 11), were expanded through the eleventh derivative
and results obtained for & and FC were compared with those ob-
tained by a more accurate numerical integration procedure
presented in the next section. Results were in excellent agree-
ment for the slope and deflections. However, sufficiently
accurate values for the internal forces and moment could only
be obtained for values of 6(0) < 80°. For values of 8(0)
greater than 80°, additional terms in the series (11) are

needed.

The coefficients appearing in equations (11) are given
in detail in the appendix to this chapter. However, it is
shown here how one proceeds to calculate these coefficients as

a function only of 6(0) and FC(O). From equations (8) and (10)

6' (0) = - M(0)/EI = 0

6" (0) = -M (0)/EI = Q(0)/EI = 0
6'"(0) = Q' (0)/BI = psing - F_(0)cosB
IV . ,

6 (0) = Q (0)/EI = - F_(0) cosf
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it

where B8 o + 6(0) and primes denote differentiation with res-

pect to §&. But from equation (1)
1
FC(O) = -K sin B

mw? such that GIV(O) is defined. Continuing in

where K
this manner, all coefficients in equations (11) through any

order derivative can be defined in terms of 6 (0), FC(O)ﬂ How -
ever, for higher order derivatives than those presented, the
algebraic manipulations required to obtain the coefficients
becomes prodigious.

To utilize the Newton Raphson procedure in solving the
simultaneous equations, the second derivatives of equations (11)
with respect to 6(0) and FC(O) are needed. The calculation of
these derivatives are obvious and as such are not presented here.
In addition, other methods such as regula falsi can be used which

do not require the additional calculation of the second deriv-

atives,

Solution by Numerical Integration

A more general technique of solution of equations (8)
is that of numerical integration. For this analysis, the
numerical integration 1s performed using a standard fourth
order fixed step Runge Kutta integration routine. While more
elaborate integration schemes such as variable step Runge-Kutta
or predictor-corrector techniques could be used, it was found

that the accuracy provided by such schemes was not necessary.




42

Since only three boundary conditions are known at each end,
it is necessary to assume three additional conditions before
the numerical integration can be performed. For this analysis
the integration proceeds from the cantilevered end where the
slope and two deflections are zero. The nonspecified initial
values, bending moment, tension, and shear are assumed, the
integration is performed, and the terminal (boundary) conditions
at the free end are calculated. The initial data is then
iteratively adjusted so that the solution to the initial value
problem satisfies the boundary conditions of zero moment, ten-
sion, and shear at the (terminal) free end.

For this analysis, the initial data is iteratively ad-
justed by solving the variational equations of the original
differential equations in conjunction with Newtons method.

This basic procedure is similar to that which has been briefly

outlined in references (1) and (2) for one dependent variable.

For completeness, the details of the procedure are now outlined
for the general case of M differential equations with M depen-

dent variables. The results are then applied to the particular
set of equations (8) and (10).

Consider the set of coupled nonlinear first order differ-
ential equations defined by Y; = f. (x, Yi), i =1,M with solu-

i
tions Yi = Yi (x, Ai) where the Ai (Ai = Y(0)) are the M initial
conditions. If these M initial conditions were known, the
equations could be solved by direct numerical integration. How-

ever, for the general nonlinear two point boundary value pro-

blem, K of these M initial conditions are unknown (K < M) so
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that to obtain a solution by integration, K values must be
assumed for the unknown initial conditions. If the integration
proceeds from left to right the resulting solution will not
in general satisfy the boundary conditions on the right end.
Thus the KX initial values must be corrected and the equations
again solved until the K initial values result in correct
boundary values at the terminal point. A systematic procedure
for obtaining these iterates is as follows.

Form the following functions with the dependent variables

that are unknown at x = 0 but which at x = b are known, i.e.

£. = Y, (b,Aj,A, «oe Ap) - Py Q= 1K 12)

where the Pi are the known values of Yi(i = 1,K) at x = b,

It is obvious that if the Al’ cue AK are the correct initial
values then the functions defined by equations (12) are zero.
Now approximate these fi by the linear parts of their Taylor

series in the neighborhood of Ai where Ai denotes the

n-1 n-1

approximate initial values

£.(b,A LAy, «oe A = £.(D,AL, v AL g+ (A - Ain_1)§
of .

| v (A, - A, ) 25 oo (A, - A, &

84, 'n-1 2 4’ 3K, ol KoKy

3f.

— |

A, 'n-1

K (13)
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and i = 1, K. Since, by definition the left sides of equations

(13) are zero at Ai = Ai (where Ai , denotes the correct ini-
n n
tial values), they can be rewritten in the form

-1
(agh, = {Aj}n_l..Ech] N A I PR O E oS

[}

with j 1, K and q = 1,M. The { } denote column matrices and
the L_:} denote square matrices. The C matrix in equations (14),

evaluated at x = b, is defined from equations (13) as

of .
i

C. = i = 1,K
iq EY * ’
9 q = 1,M (15)
Thus i1f initial values Ai are assumed so that the C and £
n-1

matrix can be evaluated, equations (14) can be used to calculate

a corrected or improved set of the initial values Ai . The
n
problem now remains to determine the elements of the C matrix.

For this analysis, these elements are determined by deriving
and solving the variational equations of the original first
order equations. The variational equations are derived as

1
follows: Let Yi(x, A AK) denote solutions of Yi = fi(x,Yi).

l,

Also, let Zij(x, Al,

AK) relative to Al’ AZ’ co. A

AK) denote partial derivatives of

Y, (x, A i.e.

1° K?

3Y
Z,, = = i

ij © 9K
. (16)

i
=
=
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From equations (16) the derivatives of Zij with respect to

X are

'

SYi oY

' -9 )
Z;; = W, A i= 1M
J = l’K (17)
q = 1,M

By making use of equations (163 equations (17) can be written

in the compact form

¥

Z.. = E. Z_ . 1= 1,M

1] 19 q3]
j = 1,K (18)
qg=1,M

Equations (18) are the variational equations of Yi(x,

A . AK) with the initial conditions

1’

Zis (0,Ap, con A = 65 (19)

where éij is the Kronecker delta. Now with solutions

Zij(x, Ai), the elements in the C matrix become just

Cij = Zyy (b, A (20)

Thus, with Cij known, the right hand side of equations (14)

can be evaluated so that the next set of initial values Ai

can be calculated. This procedure is repeated until convergence
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to correct initial values are obtained.

In summary, the step by step procedure f0or the solution

of the nonlinear two point boundary value problem using the

proposed algorithm is as follows:

1.

Assume a set of initial values and solve the ori-
ginal set of nonlinear differential equations using
any of the standard numerical integration schemes.
With these solutions known at a £inite number of
peints in the intorval 0<x<b, the elements in the
Eiq matrix are defined at the same number of points.
Now solve the K =sets of differential equations
(19) with initial values as per equation (20).

With these solutions: known, the elements Eij are
defined such that the right hand side of equations
(14) can be evaluated for the new set of initial
values Ain

Steps 1 through 3 are repeated until desired con-

A}
vergence to the correct initial values are obtained.

Application to equations (8) and (10). To apply the

results of the previous section to the solution of equations

(8) and (10), define the fundamental varizbles as follows:

Y (1) = M
Y (2) = T
Y (3) = Q
Y (4) = @ (21)
Y (5) = &
Y (6) = w
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Then the differential equations (8 ) can be written

Y (1) = Y(3)
v (2) ==X YOG) - g sin (0 + Y(4)) + p cos (a + Y(4))
v'(3) = XL YE) 4k cos (a+ Y(4)) * p sin (o + Y(4))
Y'(4) = Y(1)/EI
(22)

Y (5) = - cos (Y(4))
Y (6) = sin (Y(4))
and FC = B%i-Y(S) sina + Y(6) cos %E, B = mw?with boundary
conditions

at s = 0 Y(4) = Y(5) = Y(6) = 0O (23)

at s = L Y(1) = Y(2) = Y(3) = 0
From equations (22), the nonzero coefficients of E. are

23
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Y(3)/EI

Y (2)
DA ON

=

Fe

-p sin (a + Y(4))

cos (a + Y(4))




!
oY (2)
Y (5

3Y ' (2)
Y (6"

3Y ' (2)
YY)

s¥ﬁ%3)

3Y' (3)
IY (5)

3Y (3)

B sin o sin (a + Y(4))

=

- B cos o sin (o + Y(4))

_3Y (3)

= Y(2)/EI 32 = 5Y UZ)

E = Y(1)/EI
= - FC sin (0 + Y(4)) + p cos (a + Y(4))

==B sin o cos (o + Y(4))

= B cosa cos (@ + Y(4))

H
3Y (5 .
= 1/EI Egy = sy—gq) = sin (Y(4))
= cos (Y(4))
= -~
™ o g, 0 0o 07Nz,
CEyr O Epx By Epp EpgilZpg
= Bz Ezp 0 Bgy Bgg BgelZm
B 00 000z
‘0 0 0 B, 0 0 | Zey
o o0 o E., 0 o0 |iz
64 61
sy - g L-

(24)

(25)
Z,, Z
Z,, L
Zg, L
Zyy Z
Zey L
Zgg L
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Equations (22), (24), and (25) have been programmed on
a digital computer and solutions obtained for various slender
rod configurations. A discussion of the.results obtained

are presented in the next section.,

Discussion. of Results

Numerical results are presented in this section for the
cantilever rod rotating about the vertical at a constant
angular velocity in a gravity free (p = 0) environment. In
Table III-1, nondimensional values of moment, tension, and shear
at the fixed end are tabulated as functions of a nondimensional
"frequency' parameter.mL*w?®/EI for various values of a. With
these calculated initial values, and with the. known initial
values of zerc deflection, slope and: centrifugal force at the
fixed end, equations (22) can be integrated directly using any
of the available integration subroutines. Also, for complete-
ness, the values of slope, deflections, and centrifugal force
at the free end are plotted in Figure III-2. As can be seen, for
any given rod geometry, the deflections and slope become larger
as the angular velocity is increased, the limiting values
occurring as 6+o approaches 90°,

For low values of mL*w*/EI, the generalized forces at the
fixed end and the generalized displacements at the free end
are in good agreement with those obtained by linear theory.
However, for values of mL*w?®/EI>5, the results obtained between
the linear and nonlinear theory begin to diverge. For the

maximum values presented (mL'w®*/El = 55.66) the differences
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between linear and nonlinear theory differ by as much as
several hundred percent.

The validity of the numerical results presented here
were substantiated by carefully controlled experiments. (The
chapter on the experimental procedure and the results obtained
is included in this report). The differences between the
experimental values and those obtained numerically were
usually no greater than five percent, even when the tip deflec-

tions were as much as 80 percent of the length of the rod.
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Deformed

/ / rod

Figure III-la
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mL¥w?/EI
0.557
2,23
5.01
8.91
13,92
20,04
27.27
35,62
45.08
55.66
67.85

Table TII-1la.

mL*w?/EI
0.557
2,23
5.01
8.91
13,92
20,04
27.27
35.62
45.08
55.66
67.85

Table III-1b.

o = 15° o = 30°
0.0458 0,0717

0.3132
0.2037 0.7999
0.5854 1.6045
1.1366 2.7270
1.8484 4.1398
2.6984 5.8281
3.6838 7.7954
4.8074 10.0228
6.0760 12,5177
7.4721

TENSION (TLZ/EI)

o = 45°

0,1419
0.5926
1.4319
2.6839
4.3499
6.4153
8.8738

11.7200

14,9532

o = 60°¢

0.2107
0.8627
1.9910
3.6121
5.7236
8.3193
11.3967

14.9534

5¢
o = 75°

0.2603%
1.0473
2.3707
4,2344
6.6376
9.5791
13.0579
17.0737
21,6266

Variation of Fixed End Tension with Angular Velocity

a= 15° o= 30°
0.1139 0.0821
0.4984 0.3465

0.8188
1.3106 1.4408
2.1907 2.0908
3,018 2.7106
3.7230 3.2981
4,4821 3.8585
5.1644 4.4136
5.8301 4,9623
6.4907

Moment (ML/EI)

o= 45°

0.0926
0.3655
0.7788
1.2546
1.7307
2.1891
2.6276
3,056

3.4783

o= 75°

0.0477
0.1614
0.3142
0.4756
0.6340
0.7857
0.9341
1.0798
1.2224

Variation of Fixed End Bending Moment With Angular Velocity




Appendix

The complete expansions of equations (11} as used in this analysis

are

§ r2 1S 7 1 o Ty
8(E) = 2(0) = £6 (0) + o= 8 (0) + == 6 (0) + 2= aTV(0) «

A 33 4
~ 8 G 7 8 9 10
0%+ S efrorEo 670y + 2 o®0) + 00y + =60
5! 6! 71 8! 9! 102 .
(A1)
. L gz A w3 LR b4 I
FL(E) = F_(0) + EF_(0) + 2= F_(0) = 2+ F,_ (0) + & FLV(0) +

6 6 g? 9 9 EIQ 10

£° _5 £ 7 £ £
T FCCO) *zT FCCO) * o T FC(O) * g7 Fo(0) + g+ FL(0) = Fgr Fo (0) ~

Y

Ell 11
117 Fo (O

| S

where &€ = L-s and Arabic numericals are used to indicate deri-
vatives of 6(0) and FC(O) higher than the fourth.

By successive differentiation of the equations

S - w/m

(A2)
a%e | 1am_ Q
dgg B dg B

it is seen that the tenth derivative of 6(0) with respect to

s «can be written as
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at% 0y _ 1 d% | (A3)
de B g8

so that terms up to the eighth derivative of Q are needed.

The corresponding nonzero derivatives of 9(0) and FC(O)
are these listed as follows. Note. .that it is necessary that
the sequence of differentiation be carried out as shown in order
that the succeeding terms in the sequence are defined as func-

tions of.the previous terms.

Q' (0) =-p sing - F_(0) cos g

F;(O) =-my?2 sin R

T'(O) = - p cosg. ¥ FC(O) sing
Q'(0) =-F_(0) cos
T (0) = P;§0) sin g
™V (0) = Q'(0) (37'(0) - pcosa + F (0) sin g)/B
V(o) = (-3Q'(0) + p sing + F_(0) cos g) Q (0)/B
Vi) = - me2 Q (0) cos g/B (A4)
1°(0) = (-100 (0) Q' (0) * p Q (0) sing + 3 F_(0) Q (0) cos
+ FC(O) Q”(O) cos'B)/B + Fév sing
Q%(0) = (4 T'(0) 3"(0) + 6T(0) Q (0) * Q (0) (-p cosg + F_(0) sin 8)
+ 4 F_(0) Q (0) sin )/B -E.V(0) cos g
F2(0) =-my? Q (0) cos /B
Q%(0) = Q"(0). (20T (03 » 5 F_(0) sin g)/3B ~F2(0) cosg
Q" (o) = (61" (0) Q" (9y = 1577(0) Q' (0) - » Q'V(0) cosg
+ 10 Q' (0% (p sing + F_(0) cos )/B+F_(0) otV (0) sin )/B
F7(0) = -my* (Q'V(0) cos g- 10Q (0) sin 8/B)/B
%0y = (77 (03 Q°(0) + 21 7 (0) Q*V(0) .~ 35 TV (0) Q (0))/B

-pQ°(0) cos §/B « 35 (pQ (0) Q (8) sing




+ 2F_(0) Q “(0) cos & + F_(0) Q (0) Q"(0) cos 8)/B

+ 35F1V(0) Q (0) sin /B + 7 F_(0) Q'{0) sin /B

+ F_(0) Q°(0) sin B/B - F.(0) cosg*9T (0) Q (0)/B
Fi(O) =-mw? (Q°(0) cosg - 35 Q (0) Q (0) sin 8/B)B
F2(0) = - mu® (Q°(0) cosg - 35Q (0)% sin 8/B)/B
F20(0) = mu? (-Q7(0) cos g+ 84 Q' (0) Q'V(0) sin /B

+ 280 Q (0)° cos a/B%)/B
= mw2/B (- Q%(0) cosg *+ 36Q°(0) Q' (0) sin 8/B
+ 84Q°(0) Q (0) sin B/B + 210 QLV(0) Q (0) sin B/B

F11
c

+ 2100 Q (0)% Q" (0) cos g/B*

Therefore, with the weight per unit length (p), mass per
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unit length m, angle of inclination (&), and bending stiffness

(B) defined all terms in equation (A4), and hence in equations

(Al) can be calculated



CHAPTER IV

VIBRATIONS OF RODS SUBJECTED TO GYROSCOPIC MOTION

Summarz

A set of differential equations and. boundary conditions
are derived governing the small amplitude vibration behavior
of long slender rods and pressurized tubes about a large
deflection equilibrium state.® Particular results are ob-
tained numerically for natural frequencies and mode shapes of
a cantilever rod inclined to, and rotated about the vertical
at a constant angular velocity.

IV-A Introduction

The small amplitude vibration. analysis of slender rods
and pressurized tubes about,large(éefleﬁtion (nonlinear )
equilibrium states have received little attention in the liter-
ature. This is due mainly to the fact that an accurate de-
scription of a nonlinear equilibrium state is difficult to ob-
tain, and even if known, introduces complicated variable co-
efficients in the linear differential (vibration) equations
which makes solution by numerical methods mandatory.

The previocus chapter was concerned with the development

an efficient numerical solution fer the nonlinear equilib-

Fh

0
rium state of a slender contilevered rod, inclined to and
rotated zaboui the vertical at a constant angular velocity.
The purpose of this chapter is to develop and solve the

equations governing the small amplitude vibration behavior

about this nonlinear equiliorium state.

“here an equilibrium state means a steady stzte wmotion or &
steady dynamic equilibrium state.




The small deflection, linear vibration equations are
derived by a perturbation analysis of the general nonlinear
equations presented in (IV-1). The‘fesulting equations are
solved by the method of finite differences similar to that
presented in (IV-2) and used extensively by.the author in
(IV-3) with excellent results. For this analysis, because of
time considerations, '"out of plane", pertﬁrbed motion is
neglected so that the vesulting set of inplane equations be-
comes a sixth order set of simultaneous differential equations
with variable coefficients. that are functions of the nonlinear
equilibrium state.

The numerical results obtained in this analysis are
verified by comparing with the experimental results, obtained
from the experimental program carried out in this study and

discussed in detail in Chapter V.

IV-8 Analysis

In this section, the diiferential equations. are derived
which govern the small amplitude vibrational behavior about

the equilibrium position of a slender cantilever rod (or
pressurized tube) inclined.to and rotating about the vertical
at a constant angular velocity. In order that this be accom-
plished, the generalized deflections and internal forces in

the vibrating rod are assumed to be made up of (a) those terms
associated with an equilibrium state (or steady state motion)
and (b) those terms associated with infinitesimal time dependent

perturbations about this equilibrium state.




The general nonlinear equations of motion for a slender

rod are taken directly from.(IV-1) and .in that notation are

Agg - N‘T + TK‘ +X =0

%g'e Tk .+ NT + Y =0

df . n' v Nk Z =0

€. GrrH N +K=0 i
%gi - Hc + Gt + N+ K = 0

%% - GK'.+ G'K + 6 = 0

1
where G and G are the bending moments,. H is the twisting

'
moment, and N. and .N. and the transverse shears. These quanti-

ties are shown in.the freebody in.Figure IV-2. In comparison

1
with the .notation .of the previous.chapter G and N are

respectively M and . Q 1i.e.,.the "inplane' .bending moment and

transverse. shear .force. If shear.deformation.is.neglected,

the moments are related.to.the .curvatures:by .the relations

I ¥

Bk

G = Bk G H = Ct (2)

is the bending stiffness and C. .is. the twisting

where . B
stiffness.
The equilibrium.state, .denoted.by.a subscript zero, for

the inclined.cantilevered.rod.rotating:.at .a.constant angular

velocity about the.
of equations (1).
the "out of plane'.

!

G, N, are zero

Then equations (1)

vertical is now .obtained.as a special case
In particular,.for.this .steady state case,
bending, transverse shear, and.curvature,

and twist

as well .as the.torsion H T

reduce to
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aN

a5 " Folo Y 7 O

o

ds .+ KONO + ZO = () (3)
dG,, ,

g5 " Ng =0

il

where the curvature Ko dso » Hquations (3) are identical

ds
to equations (8) derived in the Chapter III.

Now to derive the linear vibration equations about the
equilibrium state defined by equations (3), the terms appearing

in equations (1) are written as

T, = fo + AT

H = HO + AH

X = XO + AX (4)
etC.

where subscript zero terms refer to the equilibrium state and
the incremental values denote infinitesmal time dependent per-
turbations about the equilibrium state. Substituting equations
(4) into equations (1), subtracting out the equilibrium state
given by equations (3), and neglecting products .of the per-

turbation terms, the linearized set of vibration equations

become
d 1 |
T (AN) - NOAT + TOAK + AX = 0
a ! = 0
a—s-"b (AN ) - KOAT - TOAK + AY =




s
d '
T (AG) - AN +

- (AG') - k.AH

&le.

0

d t
-a'-s—- (AH) - GOAK‘

where

To— (aT) + KOANv + N

Ak = ""‘-'-2-‘

Ak = mBKO

At dBg

ds

and

AG

AG

AH

1)

i

AK = 0

+

+

J

BAk

BAk

CAT

dw

AT=EA(a—§+

)

B

OAK + AZ =0

1
Gydt + AN + AK = 0

]
KOAG + A8 = 0

V)

(5)

(6)

(7)
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The last terms .in each of equations.(5) .are .due to the
change in the applied external loads during. the.deformation of
the rod away from its equilibrium state. .For this.case of the
rod rotating about.the vertical, the applied: external loads
considered here are due to. (a) the uniformly.distributed weight
of the rod itself.and. (b) the "reverse effective forces' due to
the acceleration. of the rod.

If rotary inertia .is neglected.and there..are no uniformly
distributed couples along: the length of the rod, then

{

AK = AK = A8 = 0 (8)

The contribution of.the remaining accelerational forces
to AX, AY, AZ are now obtained. .Consider the inertial XYZ
coodinate system.shown in.Figure IV-1, In addition, a body
fixed set of axis X, ¥y, z are oriented.as .shown in the tan-
gential, normal, and.binormal direction with respect to the
deformed equilibrium .state. For steady state .motion due to a
constant angular velocity it is:.obvious.that the."accelera-

tional force' 1is just

-> - >
accel - TR W XWX R (9)

where

e¥
|

= -Jw sin (a + 0,) + kw cos (o + 8,) (10)
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and R 1is the radius vector to the origin of the body fixed
coordinate system in the equilibrium state. If equation (9) is
expanded the resulting force due to this centrifugal accele-

ration is the same as that obtained in the previous chapter, i.e.,

N
1]

F_sin (o + 06,)
accel ¢ 0

Y.

]

= F_ cos (a + 08,)
Osccel ¢ 0
where Fc is the centrifugal force vector perpendicular to the
axis of rotation and is defined by equation (9).
The ‘acceleration of point 0 away from the equilibrium state

can be written as

30 =32+ 2uxV+wxox7t (1)
where

TaTu+Tvetuw

V=To+3vekw (12)

F=Tlu=+jve+kuw

T =0 - Ju sin(e + 0,) + ko cos(a + 60)
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and dots over the symbols indicate differentiation with
respect to time. Note.that the perturbation-displacements u,
v, w are in the binormal, normal; and:tangential: directions
respectively with.respect: to. the:deformed:state.  Thus, the
change in forces. in'the.x; 'y, z, directions due. to the accele-
ration are obtained by .substituting-equations: (12) into (11),
expanding and multiplying: the result:by.the mass m. Then

=3, - - 2 . . 2 . ) @
Axaccel' an}. uw? - elw sin(o * eo) # V ocos(a + 6053

=

AYaccel

WU cos (o + eozﬁ

AZ

&4n§2r“ w?cos (o + 60)(w sin(o *“@Q) + v .cos (o * QOD-%

- ’ ) 2.2 . 2o F . L 6w
accel mmm;%w - w?sin(a + 6y)(w sin(a + 85} + v cos{a * 80))+

wu sin(a + Gﬁij
(13)

In addition to the accelerational forces., the applied
external loads may also change during:the deformation of the
rod away from its equilibrium state. For.this analysis con-
sider the rod to be locaded uniformly by its own weight. In
the equilibrium state, the components of force due to the
weight pds of a differential element.ds at point 0 are,in

the positive =z direction:

~~
[
£
ot

Zg ==p cos {a + 84)
weight
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in the positive y direction

Y = p-s§in (o + 60) (14)

Oweight

]
However, as point 0 moves to point 0 the components of force

change tos

i
in the positive z. direction

ZO + AZ

, “=D CO5 (W .+ GO 4+ 00)
weight

weight

. ‘
in the positive vy direction (15)

Y + AY

s = p sin (o + 8, + A6)
Oweight weight 0

where A8 is the inplane rotation of the axis system xyz with

¢ ¥ ¢
respect to x y z , the later being tangent and normal to the

1
. perturbed configuration at 0 . Expanding equation (15), assuminhg

A® small compared to unity, .and subtracting out the identities
(14), the net change in the external loads due to the defor-

mation of the rod away from equilibrium becomes |

'Axweight =0

= pA6 sin(a + 60)
(16)

;
4
]

= pAb cos(a + 8,)
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where

AB = - (- Is + 5 W) (17)

Now-substituting equations (8), (13),.and (16) into
equations (5), we. obtain the linearized wibration equations.

for the rod.

f § oe R
%-g (AN) - NOAT + TOAK - mEu - un? <o (wsin(o + eo) +

v cos (o + 60))3“ 0

t *e .
%E (AN ) - KOAT TOAK + pAG»cos(a + 60) o my[} -w? cos (g * 60)(

w sin(o + 60) + v cos (o .+ 80)) + WU cos (o 60{m3 =

. . .
%E (AT) + kAN + Nyl + pA6 sin(o + 60) - E;w -~ w? sin(o + 60)(

w sin(o + 60) “« v cos (o + 60)) + wu sin(a + 60?:1 =

%E (AG) - AN = 0

(18)

i ¥
%(AG)—KGAH+GSAI+AN=O

¥ v
%E (8H) - Ggak + kghG = 0
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Making use of equations . (2) and (7) in equations..(18) there
results, for a rod. of .constant .cross section,

i}

G 0 ! [
BAk = 0 ' (19)

1]
c—%; (87) - G bk +

or since the twisting stiffness C .is not zero

—z (A1) = 0 => At .= constant (20)

However, for the case being investigated,.it: is obvious that the
change in twist at the £free.end.is.zero.and thus by equation
(20), the change . in twist.is.identically.zero. throughout the
length of the rod.

In 2 similar manner. substituting equations . (2) and (7)
into the fifth equation.of equations (18) yields .the following

relation.between the "out of .plane' shear.and bending moment.

ugg,(AGB + AN = .0 (21)

It should be noticed that this.same result.is .obtained if
equation (20) .is substituted .into the:fifth equation of equa-
tions (18).

Now using equations (20), (21) and the fourth equation
of equations.(18) in the first .three equations .of equations

(18), we obtain
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' v - o o
- dz (AG ) + xo AG a.mgz? < wiuo- wlw sin(a + 60) +
E’? B '
S
v cos(a + 60)) = 0

: Sg To av , S

§_7 (4G) - g> AT - g2 &6 - p( --g%+ —gw) cos (a + 67) =
s

g,

mg:} - w?cos (o + 60)( w sin (a * 60).+ v cos (o + 60))+

Wy cos (oo + eoﬁ = 0
?

G N G
d d . 0 . . .
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